X
تبلیغات
www.a-1.blogfa.com - دانستنی های بسیار جالب ریاضی

www.a-1.blogfa.com

دانستنی های ریاضی

دانستنی های بسیار جالب ریاضی

جذابیتها ی ریاضی

 

  


سرگرمی۲

ریاضیات فریبنده!!! این سوأل رو فقط ذهنی حل کنید. از قلم و کاغذ و ماشین حساب استفاده نکنید.

عدد 1000 رو فرض کنید. 40 رو به اون اضافه کنید. حاصل رو با یک 1000 دیگه جمع کنید. عدد 30 رو به جواب اضافه کنید. با یک هزار دیگه جمع کنید. حالا 20 تا دیگه به حاصل جمع، اضافه کنید. 1000 تای دیگه جمع کنید و نهایتاً 10 تا دیگه به حاصل اضافه کنید. حاصل جمع بالا چنده؟

  

سرگرمی

پدر ماری، پنج تا دختر داره: 1-Nana 2- Nene 3- Nini 4- Nono. اسم پنجمی چیه؟

  

دانش ریاضی در چه زمانی و توسط چه کسانی متولد شد؟

تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند. البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد. اگر به تاریخ آفریقا نگاه کنیم،

  • قدیمیترین شئ ریاضی از 35000 سال پیش از میلاد در سوازیلند کشف شده.
  • قدیمیترین مثال حساب از 6000 سال پیش از میلاد در زئیر کشف شده.
  • هرم عظیم گیزا که یک شاهکار مهندسی است، حوالی سال 2650 پیش از میلاد در مصر ساخته شده.
  • پاپیروس مصری 4000 ساله معروف به مسکو، حاوی مطالبی از هندسه است.


لازم به اشاره است که، یونانیان نیز مبانی ریاضی را از بابلیان به ارث برده‌اند.

 

ریاضیات مدون در حدود 2000 سال قبل از میلاد مسیح ، توسط بابلیان بوجود آمد . در آن زمان بابلیان نتایج جبر مقدماتی را یکجا جمع کردند. اما ریاضیات به مفهوم واقعی و امروزی آن ، در سرزمین یونان و در قرنهای 4 و 5 قبل از میلاد ایجاد شد. به تدریج توسعه یافت، اوج رشد آن در قرن 17 با بوجود آمدن هندسه تحلیلی و حساب دیفرانسیل و انتگرال بود. اما در قرن 19 تجدید نظر کلی و پیشرفتهای فراوان در این علم بوجود آمد.

 

  


اشکال فضايی

ریاضیدانان قرنها درباره خواص شکلهای فضایی (سه بعدی) تحقیق کرده اند. شکلهای فضایی که آسانتر از همه رده بندی می شوند، چندوجهی نام دارند.
فقط پنج چند وجهی منتظم وجوددارد، که عبارتند:
از چهار وجهی (دارای رویه های مثلث شکل )، مکعب(دارای شش رویه مربع شکل)، هشت وجهی (دارای رویه های مثلث شکل)، دوازده وجهی (دارای رویه های پنج ضلعی)، و بیست وجهی که (دارای رویه های مثلث شکل) می باشد.

img/daneshnameh_up/b/bd//Shekl_fazaei1.jpg

img/daneshnameh_up/1/12//Shekl_fazaei3.jpg

img/daneshnameh_up/6/6a//Shekl_fazaei4.jpg

img/daneshnameh_up/3/37//Shekl_fazaei6.jpg

img/daneshnameh_up/2/28//Shekl_fazaei7.jpg

img/daneshnameh_up/e/e7//Shekl_fazei5.jpg
  


 

اعداد مثلثی
Triangle Numbers
اعداد مثلثی
1، 3، 6، 10، 15، 21 و ... بنظر شما این اعداد چه ویژگی مشترکی دارند؟ اگر دست به قلم نشویم و شکل نکشیم و آزمایش نکنیم، فهمیدن ارتباط میان آنها کمی دشوار است. به این شکل دقت کنید مشکل شما حل خواهد شد. به اعداد موجود در این سری، اعداد مثلثی می گوییم.

1 = 1
3= 1+2
6= 1+2+3
10= 1+2+3+4
15= 1+2+3+4+5
21= 1+2+3+4+5+6
. . .

اما شکل اول یک ایده جدید به ما می دهد که می توانیم این اعداد را همانند پاراگراف بالا نیز تفسیر کنیم.

به بیان دیگر می توان گفت که هرعدد مثلثی تشکیل شده است از حاصل جمع یکسری از اعداد متولی طبیعی. به این معنی که اولین عدد مثلثی مساوی است با مجموع یک عدد از اعداد طبیعی، دومین معادل است با مجموع دو عدد از اعداد طبیعی، سومین معادل است با مجموع س عدد از اعداد طبیعی و ... و بالاخره n امین عدد مثلثی معادل است با مجموع n عدد از اعداد طبیعی که اگر ریاضیات دبیرستان را هنوز فراموش نکرده باشید بخاطر خواهید آورد که مقدار این عدد معادل n(n+1)/2 خواهد بود. (یک تصاعد ساده حسابی)

Triangle Numbers
مجموع دو عدد مثلثی متوالی
اگر هر دو عدد پشت سرهم در سری اعداد مثلثی را با هم جمع کنیم حاصل جمع یک عدد مربع می شود. مثلا" 1+3=4 یا 3+6=9 یا 6+10=16 و ... البته دلیل آن ساده است به شکل دوم توجه کنید و ببینید که چگونه دو مثلث قرمز و سبز روی هم تشکیل یک مربع را می دهند. (سعی کنید با استدلال ریاضی هم این موضوع را ثابت کنید، ساده است از همان رابطه بالا استفاده کنید.)
مطلب اخیر اغلب بصورت قضیه "مربع هر عدد طبیعی برابر است با مجموع دو عدد مثلثی متوالی" نیز مطرح می شود.
  


پایه های اولیه هندسه نااقلیدسی

نیکلای ایوانویچ لباچفسکی (Lobachevsky, Nikolay Ivanovich) از جمله اولین کسانی بود که قواعد هندسه اقلیدسی را که بیش از 2000 سال بر علوم مختلف ریاضی و فیزیک حاکم بود درهم شکست. کسی باورش نمی شد هنگامی که اروپا مرکز علم بود شخصی در گوشه ای از روسیه بتواند پایه های هندسه اقلیدسی را به لرزه در بیاورد و پایه های علم در قرن نوزدهم را پی ریزی کند.


خیال نداریم راجع به خود او صحبت کنیم بلکه می خواهیم بطور مختصر بیان کنیم که او چه کرد. در میان اصول هندسه اقلیدسی اصلی وجود دارد به اینصورت : از هر نقطه خارج یک خط نمی توان بیش از یک خط موازی ( در همان صفحه ای که خط و نقطه در آن قرار دارند) به موازات آن خط رسم کرد.

در طول سالها این اصل اقلیدس مشکل بزرگی برای ریاضی دانان بود. چرا که ظاهری شبیه به قضیه داشت تا اصل. مقایسه کنید آنرا با این اصل اقلیدس که می گوید بین هر دو نقطه می توان یک خط راست کشید و یا اینکه همه زوایای قائمه با هم برابر هستند.

حقیقت آن است که بسیاری از ریاضی دانان سعی کردند که این اصل اقلیدس را اثبات کنند اما متاسفانه هرگز این امر ممکن نشد. حتی خیام در برخی مقالات خود سعی در اثبات این اصل کرد اما او نیز همانند سایرین به نتیجه نرسید.

لباچفسکی (1792 - 1856) نیز همانند بسیاری از دانشمندان علوم ریاضی سعی در اثبات این اصل کرد و هنگامی که به نتیجه مطلوب نرسید نزد خود به این فکر فرو رفت که این چه هندسه ای است که بر پایه چنین اصل بی اعتباری استوار شده است. اما لباچفسکی در کوشش بعدی خود سعی کرد تا رابطه میان هندسه و دنیای واقعی را پیدا کند.

او معتقد بود اگر نتوانیم از سایر اصول هندسه اقلیدسی این اصل را ثابت کنیم باید به فکر مجموعه اصول دیگری برای هندسه باشیم. اصولی که در دنیای واقعی حضور دارند. او پس از بررسی های بسیار چنین بیان کرد :

از هر نقطه خارج یک خط می توان لااقل دو خط در همان صفحه به موازات خط رسم کرد

هر چند پس از این فرض بنظر می رسید که وی در ادامه به تناقض های بسیاری خواهد رسید اما او توانست بر اساس همین فرض و مفروضات قبلی اقلیدس به مجموعه جدید از اصول هندسی برسد که حاوی هیچگونه تناقضی نباشد. او پایه های هندسه ای را بنا نهاد که بعدها کمک بسیار زیادی به فیزیک و مکانیک غیر نیوتنی نمود.

  


ارشمیدس و دفاع از شهر سیراکیوز

 
Archimedes
ارشمیدس (287-212 قبل از میلاد)
ارشمیدس (Archimedes) از بزرگترین ریاضی دانان همه اعصار و به یقین بزرگترین آنها در عهد عتیق از اهالی شهر یونانی سیراکیوز واقع در جزیره سیسیل بود. وی در حدود سال 287 قبل از میلاد به دنیا آمد و در زمان غارت سیراکیوز به دست رومیان در سال 212 قبل از میلاد در گذشت.
ارشمیدس پسر یک منجم بود و بخش قابل توجهی از زندگی خود را در مصر و نیز دانشگاه اسکندریه گذراند. مورخین رومی داستانهای بسیار جالبی را به او نسبت می دهند در این میان از همه آشنا تر توصیفاتی است که از تدابیر استادانه ارشمیدس برای کمک به دفاع از شهر سیراکیوز در مقابل محاصره ای که به وسیله سردار روم مارسلوس (Marcellus) رهبری می شد بود.

اختراع ، ساخت و بهبود منجیق (وسیله پرتاب سنگهای بزرگ) را به او نسبت می دهند. منجیق های ساخت او دارای قدرت زیاد و برد قابل تنظیم بود و بسادگی توانایی هدف گیری کشتی های دشمن هنگامی که به خشکی نزدیک می شدند را داشت.

همچنین این داستان که او از آینه های قوسی بزرگ برای به آتش کشیدن کشتی های دشمن استفاده می کرد به او منصوب می باشد.

این گفته بسیار دقیق نیز از او می باشد : "جایی برای ایستادن به من بدهید تا زمین را بلند کنم". وی بر اساس همین گفته اقدام به حرکت دادن کشتی های سنگین با استفاده از قرقره های مرکب نمود. کاری که تا قبل از آن نیاز به تعداد زیادی کارگر داشت.

بنظر می رسد که ارشمیدس از قدرت تمرکز بسیار بالایی برخوردار بود و برخی از رویاتهای جالب نیز به بی خبری او از دنیای اطراف مرتبط می شود، بخصوص هنگامی که مشغول فکر کردن راجع به مسئله خاصی بود.

یکی از ماجراها مربوط می شود به سوء ظن پادشاهی - شاه هیرون - که می خواست بداند آیا در تاجی که برای او ساخته شده است به غیر از طلا از نقره هم استفاده شده است یا خیر. پادشاه برای اطمینان از ارشمیدس تقاضا کرد تا تاج را بررسی کند و داستان به آنجا کشید که ارشمیدس روزی در حمام توانست یکی از قوانین مهم فیزیک - هیدرواستاتیک - را کشف کند و در حالی که برهنه بود به خیابان دوید و گفت یافتم (Eureka)، یافتم. (ادامه دارد ...)
  


سوال وپاسخ ساده-1

سوال:

درجمعی 100 نفره تعدادی وکیل و مهندس حضور دارند،اگر از هر دو نفر حد اقل 1 نفر وکیل باشد
در آن جمع چند وکیل و مهندس داریم؟

پاسخ:

در این جمع 99 وکیل و 1 مهندس داریم.

  


مثال تاریخی در مورد تصاعد ها



در کشور ما ایران در سده های چهارم و پنجم هجری ، بسیاری از ریاضی دانان ایرانی ، به بررسی تصاعد ها پرداخته‌ اند از جمله « ابوریحان بیرونی » در کتاب خود به نام « آثار الباقیه عن القرون الخالیه » مسئله معروف صفحه شطرنج را که در واقع مسئله ای مربوط به یک تصاعد هندسی است که جمله ی اول آن واحد و تعداد جمله ها 64 باشد ، حل کرده است و با استدلال دقیق ، مجموع جمله های این تصاعد را به دست آورده است

18446744073551615.

درباره صفحه شطرنج ، روایتی وجود دارد . وقتی مخترع شطرنج ، کشف خود را به شاه عرضه کرد ، شاه از اوخواست پاداشی بخواهد ، دانشمند پاسخ داد : به خاطر خانه اول شطرنج ، یک دانه گندم به من بدهید و به خاطر خانه دوم دو دانه‌ی گندم و به خاطر خانه سوم چهار دانه‌ی گندم و همینطور برای هر خانه دو برابر خانه‌ی پیش از آن گندم به من بدهید تا به خانه شصت و چهارم برسد . شاه با ساده لوحی فرمان داد یک کیسه گندم به این مرد بدهید . ولی او نپذیرفت و تقاضا کرد پس از محاسبه دقیق ، گندم را به او بدهند و پس از محاسبه، عددی را که در بالا آوردیم پیدا شد .که اگردر تمام سطح کره زمین (یعنی هر جا که خشکی باشد ) گندم بکارند این مقذار گندم به دست نمی آید. ابوریحان بیرونی با استدلال به این نتیجه رسید که مقدار گندم ها برابر 264-1 و برای محسوس کردن این عدد می گوید:در سطح کره مین 2305 کوه را در نظر می گیریم ، اگر از هر کوه 10000رود جاری شود ، در طول رود خانه 1000قطار قاطر حرکت کند و هرقطار شامل 1000قاطر باشد و بر هر قاطر 8 کیسه گندم قرار داده باشیم . ودر هر کیسه 10000دانه گندم باشد . آن وقت عدد همه‌ی این گندم ها از تعداد گندم های صفحه شطرنج کوچکترمی شود.

  


 

نمایش اعداد بوسیله حروف لاتین  


در نمایش اعداد به این شیوه،به بعضی از حروف مقادیری رابه صورت زیر نسبت میدهیم:
I=1
V=5
X=10
L=50
C=100
D=500
M=1000

چهار اصل برای خواندن و نوشتن اعداد لاتین وجود دارد:
1.هر چند باری که یک حرف تکرار شود،ارزش آن در تعداد تکرارها ضرب میشود.
به عنوان مثال: XXX=30 CC=200
2.اگر یک حرف با ارزش کمتر بعد از یک حرف با ارزش بیشتر بیاید آنگاه ارزش آن دو جمع میشود:
VI=5+1=6
LXX=50+10+10=70
3.اگر یک حرف با ارزش بیشتر بعد از یک حرف با ارزش کمتر بیاید آنگاه مقادیر آنها از هم کم میشود:
IV=5-1
XC=100-10
CM=1000-100
3_1.تنها توانهای عدد 10 را میتوان از اعداد کم کرد:مثلا عدد95 را نمیتوان به صورت VC=100-5 نشان داد

3_2.تنها یک بار نیتوان از تفریق استفاده کرد.به عنوان مثال عدد 13 را نمیتوان به صورت IIXV=13=15-1-1 نمایش داد

3_3.عدد یک را نمیتوان از ضرایب 10 کم کرد.مثلا عددی مانند IXX وجود ندارد.
مثلا عدد 99 را نمیتوان به صورت (IC=(100-1 نشان داد

4.علامت بار روی حروف ارزش اعداد را 1000 برابر میکند.


  



قضیه فیثاغورث



در علم ریاضی، قضیه فیثاغورث، یک رابطه در فضای اقلیدسی بین اضلاع یک مثلث قائم الزاویه را بیان میکند. اگر چه این قضیه قبل از آن که فیثاغورث آن را بیان کند توسط بابلیان و هندوها به کار برده می شد ولی به نام او ثبت گردید

قضیه


img/daneshnameh_up/Pythagorean.png

فرض کنید سه مربع روی اضلاع یک مثلث قائم الزاویه،که طول اضلاع قائم آن a وb و طول وتر آن c میباشد؛مطابق شکل زیر می سازیم


این قضیه به ما توضیح میدهد که جمع مساحتهای دو مربع ساخته شده روی دو ضلع قائم یک مثلث قائم الزاویه با مساحت مربع ساخته شده روی وتر برابر است.

مثلث قائم الزاویه مثلثی است که دارای یک زاویه قائم میباشد و به ضلعی که روبروی این زاویه در مثلث قرار دارد، وتر میگویند.
در شکل اضلاع زاویه قائم با aوb و وتر با c نشان داده شده است.
بیان دیگر قضیه به این صورت است که در یک مثلث قائم الزاویه مجموع مربعات دو ضلع قائم با مجذور وتر برابر است.

جالب است بدانید که بیش از چهل روش هندسی برای اثبات این قضیه وجود دارد.


 

اثبات قضیه


img/daneshnameh_up/Pythagorean_proof.png

می توان با توجه به شکل روبرو اثبات هندسی قضیه را به راحتی درک کرد.
در هر دو شکل مربعی به ضلع a+b داریم.در شکل سمت راست چهار نمونه از مثلث قائم الزاویه دور مربع ساخته شده بروی وتر وجود دارد. و هر چهار مثلث دارای مساحت یکسان می باشند. با چند جابجایی در شکل سمت راست به شکل سمت چپ می رسیم.در این شکل همان چهار مثلث قبلی وجود دارند ولی مربعی که اضلاع آن به c بود به دو مربع به اضلاع a,b تبدیل شده است، که همان قضیه فیثاغورث را نشان میدهد







img/daneshnameh_up/1.gif




شکل روبرو نیز نشان دهنده روش دیگری از اثبات هندسی می باشد:








  


جالب وخواندنی۴

چرا 14 مارس روز عد پی نامگذاری شده است.


این نامگذاری به علت سه رقم اول عدد پی ( یعنی 3.14)میباشد.یعنی روز چهاردهم از سومین ماه میلادی،البته بد نیست بدانیم آلبرت انیشتین هم در این روز چشم به جهان گشود.  

جالب وخواندنی۳

چهل و یکمین عدد مرسن شناخته شد

پس از گذشت کمتر از شش ماه از اکتشاف چهلمین عدد اول مرسن عدد
با 7,235,733 رقم نه تنها به عنوان بزرگترین عدد اول مرسن شناخته شده بلکه به عنوان بزرگترین عدد اولی که تا کنون کشف شده است شناخته شد. طبق گزارشی که در سایت "کشف اینترنتی اعداد اول مرسن" (GIMPS) ارائه شد این عدد از الگوریتم "لوکاس- لمر" با موفقیت عبور کرده و در نتیجه عددی اول می باشد.
بزرگترین هفت عدد اول مرسن از جمله آخرین آنها توسط یک همکاری بین المللی به وسیله داوطلبان GIMPS کشف شده اند. آخرین عدد اول مرسن کشف شده توسط یکی از داوطلبان GIMPS به نام "جاش فیندلی" پس محاسباتی دو هفته ای با کامپیوتر P4 2.4GH شناخته شده است این نتیجه به طور جدا گانه توسط "تونی ریکس" و "جف گیلچریس" پس از محاسباتی که به ترتیب 5 و 11 روز به طول انجامیده است تأیید شد.
الگوریتمی که برای تست اول بودن یک عدد در GIMPS مورد استفاده قرار می گیرد توسط دکتر "ریچارد کرندل" - مدیر مرکز محاسبات پیشرفته در کالج رید در ارگون پورتلند - به وسیله نرم افزار Mathematica تهیه شده است.

  


جالب وخواندنی۲

ارتباط نام سایت گوگل با ریاضی


آیا میدانید google به چه معنی است؟ Google از کلمه Googol گرفته شده است. Googol هم اسم مستعار یک عدد است که توسط «میلتون سیروتا» نامگذاری شده است.عدد مذکور «ده به توان صد» است(به بزرگی این عدد دقت کنید)
انتخاب گوگل جنبه شعاری دارد.به این مفهوم که گوگل قصد دارد تا سرویسها و خدمات و اهداف خود را به تمام جهان گسترش دهد.
به عدد «ده به توان ده به توان صد» گوگل پلکس(Googolplex) میگویند.
و به عدد «ده به توان ده به توان ده به توان صد»گوگل دوپلکس
(Googolduplex) میگویند.
  


 

مساحت یک دایره از فرمول زیر محاسبه می شود.

img/daneshnameh_up/pirsquaredtit2.jpg
img/daneshnameh_up/pirsquaredtit.jpg


اما این فرمول از کجا آمده؟ بگذارید پیدا کنیم.
کاری که می خواهیم انجام دهیم شکستن دایره به قسمتهای مساوی و بازآرائی آن به شکل مستطیل می باشد که مساحت آن را می دانیم.

عرض × طول = مساحت



ممکن است شما باور نکنید که می شود قطعات یک دایره را به مستطیل تبدیل کرد.
خوب، فقط نگاه کنید ... آسان است.
با دایره ای که می خواهیم بشکنیم شروع می کنیم.

img/daneshnameh_up/intropic1.jpg



حالا دایره را به چهار قسمت مساوی تقسیم می کنیم.

img/daneshnameh_up/intropic2.jpg img/daneshnameh_up/intropic2.jpg img/daneshnameh_up/intropic2.jpg img/daneshnameh_up/intropic2.jpg



حالا آنها را طوری کنار هم می گذاریم تا یک مستطیل ایجاد شود.

img/daneshnameh_up/circlequarters.jpg



دقیقاً یک مستطیل نیست، هست؟
اما کار ما هنوز تمام نشده، بگذارید دایره را به هشت قسمت مساوی تقسیم کنیم.

img/daneshnameh_up/intropic3.jpg img/daneshnameh_up/intropic3.jpg img/daneshnameh_up/intropic3.jpg img/daneshnameh_up/intropic3.jpg
img/daneshnameh_up/intropic3.jpg img/daneshnameh_up/intropic3.jpg img/daneshnameh_up/intropic3.jpg img/daneshnameh_up/intropic3.jpg


آنها را به شکل مستطیل مرتب می کنیم.

img/daneshnameh_up/circleeighths.jpg



مطمئناً شروع کرده که شبیه یک مستطیل بشود، اما هنوز تا آنجا فاصله داریم.
قدم بعدی این است که به عقب برگردیم و دایره را به شانزده قسمت مساوی تقسیم کنیم.
قطعات اینجا هستند.

img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg
img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg
img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg
img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg img/daneshnameh_up/intropic4.jpg


این دفعه وقتی آنها را کنار هم قرار می دهیم. خیلی بیشتر مثل مستطیل به نظر می رسند، ببینید.

img/daneshnameh_up/circlesixteenths.jpg



هدف ایجاد شکلی است که تا حد ممکن به مستطیل نزدیک باشد.
تا بتوانیم مساحت آن را با استفاده از فرمول مستطیل محاسبه کنیم.
عرض × طول = مساحت
اما این شکل اضلاع صاف ندارد، بنابراین فرمول حیلی دقیق نمی باشد.
بگذارید یک قدم جلوتر برویم و دایره راه به گروهی خرده های کوچک تقسیم کنیم. وقتی تمام قطعات را کنار هم قرار می دهیم، شکل مانند زیر به نظر می رسد.

img/daneshnameh_up/almostrectangle.jpg



این خیلی شبیه یک مستطیل کامل است. اما می توانید ببینید که بالا و پائین هنوز کاملاً صاف نیستند. آنها کمی دست انداز دارند.
می توانید تصور کنید که اگر باز هم به کارمان ادامه بدهیم چه اتفاقی خواهد افتاد؟ اگر به شکستن دایره به قطعات کوچکتر و کوچکتر ادامه دهیم؟
دست آخر، دست اندازها آنقدر کوچک می شوند که نمی توانیم آنها را ببینیم، و بالا و پائین شکل کاملاً مستقیم به نظر خواهند رسید. این چیزی است که خواهیم دید.

img/daneshnameh_up/perfectrectangle.jpg



یک مستطیل کامل. حالا تمام کاری که باید انجام دهیم پیدا کردن مساحت مستطیل با استفاده از فرمول عرض × طول = مساحت می باشد.

img/daneshnameh_up/rectangleformula.jpg



سوال بعدی این است که، طول و عرض مستطیلی که از قطعات دایره ایجاد شده چه اندازه ای دارند؟
اجازه بدهید به عقب برگردیم، تا شما قطعات دایره را واضحتر ببینید.

img/daneshnameh_up/circlesixteenths.jpg



طول بیرونی دایره اصلی، مسافت پیرامون دایره، یا محیط دایره می باشد.

img/daneshnameh_up/circumference.jpg



نصف این مسافت پیرامون، در بالای مستطیل و نصف دیگر آن در پایین قرار می گیرد.

img/daneshnameh_up/circlelabelled.jpg



به عبارت دیگر، تمام تکه های آبی و قرمز برابر محیط دایره می باشند.
کناره های مستطیل درست شعاع هر قطعه یا شعاع دایره می باشند.

حالا می توانیم مساحت شکل را با فرمول مستطیل محاسبه کنیم.

img/daneshnameh_up/finalline.jpg



... و در اینجا ما فرمول مساحت دایره ای را که با آن شروع کردیم، داریم.

  

روش حفظ تقويم

تقویم ذهنی بوسیله ریاضی

روش حفظ کل تقویم سال در چند دقیقه:این کار بسیار ساده است. حتی در ظرف یک دقیقه هم امکان پذیر است:
فقط شما کافی است اولین شنبه هر ماه رو بدونید که چندم است؟
مثلا فروردین سوم است.و اولین 5شنبه اون میشود 5+3=8
(رمز:فردین اولین فیلم خود را در 3 سالگی بازی کرد)
برای هر ماه در ذهن خودتون یک رمز بسازید
اسفند:وقتی اسپند دود می کنم یک غول سه سر از اون بیرون میاد!
دومین سه شنبه؟------>3+7+3=13

  

اخبار


یک عدد عجیب

یک نفر از اساتید دانشکده شهر آتن پایتخت یونان چندی پیش عددی را کشف کرد که خصایص عجیبی دارد.
آن عدد:142857 میباشد.
اگر عدد مذکور را در دو ضرب کنیم، حاصل: 285714 میشود! (به ارزش مکانی 14 توجه کنید).
اگر این عدد را در سه ضرب کنیم حاصل: 428571 میشود!(به ارزش مکانی 1 توجه کنید).
اگر این عدد را در چهار ضرب کنیم حاصل: 571428 میشود!( به ارزش مکانی 57 توجه کنید).
اگر این عدد را در پنج ضرب کنیم حاصل: 714285 میشود!(به ارزش مکانی 7 توجه کنید).
اگر این عدد را در شش ضرب کنیم حاصل: 857142 میشود! (سه رقم اول با سه رقم دوم جا بجا شده)
اگر این عدد را در هفت ضرب کنیم حاصل: 999999 میشود!
لطفا" ضربهای بالا را خود شما نیز انجام دهید و حاصل را با عدد اصلی مقایسه کنید.

  


جالب وخواندنی

بزرگترین عدداول کشف شد

دکتر Nowak آلمانی توسط کامپیوتر شخصی خود که پنتیوم 4 با قابلیت 2.4GHمیباشد بزرگترین عدد اول را کشف کرد.
این عدد از فرمول اعداد اول مرسن بدست آمده که طبق فرمول مرسن n=25964951 میباشد.
یعنی برای بدست آوردن عدد اول مزبور 2 را بتوان n میرسانیم و از آن یک واحد کم میکنیم.

  


پرفسور لطفی زاده و منطقش

لطفى زاده در سال ۱۹۲۱ در باکو پایتخت آذربایجان شوروى سابق دیده به جهان گشود. پدرش خبرنگار روزنامه ایرانیان و مادرش روسى الاصل و پزشک بود. در پى مهاجرت هایى که به جهت سیاست سختگیرانه استالین صورت مى پذیرفت، لطفى زاده همراه با خانواده اش در سال ۱۹۳۱ به تهران مهاجرت کرد. او از ۱۰ تا ۲۳ سالگى در ایران زندگى کرد و در ۱۹۴۲ با مدرک مهندسى برق از دانشگاه تهران فارغ التحصیل شده و دو سال بعد به آمریکا رفت و در ۱۹۴۹ موفق به اخذ مدرک PhD از دانشگاه کلمبیا در نیویورک شد و در همان جا شروع به تدریس تئورى سیستم ها کرد و از سال ۱۹۵۹ در دانشگاه کالیفرنیا در برکلى (UCB) در سمت استادى مشغول به تدریس شد. در ۱۹۶۳ ریاست دپارتمان برق دانشگاه برکلى را برعهده گرفت. در ۱۹۵۶ هارولد رابینز بنیانگذار شاخه «تقریب هاى اتفاقى» از علم آمار و احتمالات از طرف موسسه پرینستون از او به مدت یک سال جهت تحقیقات پیشرفته دعوت به عمل آورد. این موسسه یکى از مهمترین موسسات دنیا به شمار مى رود و دانشمندانى همچون آلبرت اینشتین و کرت گودل در آنجا آمد و شد داشتند. در این موسسه بود که لطفى زاده با استفان کلین که خود مبدع نوعى منطق سه ارزشى معروف به منطق سه ارزشى کلین است، آشنا شد. او از کلین اصول ریاضى و منطق چندارزشى را فرا گرفت. آشنایى با منطق هاى چندارزشى را شاید بتوان به مثابه جرقه اى در ذهن لطفى زاده دانست که نهایتاً منجر به ابداع منطق فازى شد. در سال ۱۹۵۶ او مقاله معروف و جنجال برانگیز «مجموعه هاى فازى» را در مجله اطلاعات و کنترل به چاپ رساند.طى اولین سال ها پس از انتشار مقاله، نه تنها طرح پیشنهادى لطفى زاده از پذیرش در محافل علمى محروم ماند بلکه از هر سوى انتقادات شدیدى بر آن وارد شد و با بى مهرى فراوانى مواجه شد. در خیل منتقدان او چهره هاى سرشناسى مانند رودلف اى. کالمن که «فیلتر کالمن» به نام او ثبت شده دیده مى شود. کالمن در سال ۱۹۷۲ در کنفرانس انسان و رایانه در بوردوى فرانسه در خصوص منطق فازى چنین سخنانى را بیان داشت: طرح پیشنهادى لطفى زاده باید شدیداً و حتى به طور بى رحمانه اى از نقطه نظر تکنیکى مورد نقد قرار گیرد... یک سئوال همچنان باقى است: آیا پروفسور لطفى زاده ایده مهمى را مطرح کرده است یا اینکه دستخوش تفکرات خیال پردازانه شده است؟
«
هیچ شکى نیست که شور و شوق پروفسور لطفى زاده به مبحث فازى با جو سیاسى حاکم بر ایالات متحده تقویت شده است. جوى که بى سابقه ترین توان تحمل و گوش شنوا را دارد فازى از مباحثى است که باید آن را تحمل کرد. مبحثى که به ارائه شعارهاى عامه پسند تمایل دارد. چیزى که عارى از نظام سخت کارهاى علمى و صبر و حوصله لازم در علوم تجربى استیک خبرنگار در سال ۱۹۷۵ جایگاه لطفى زاده را بین رقیبان خود در برکلى به کوتاهى چنین توصیف کرد: «ویلیام کاهان استاد علم رایانه و ریاضیات در کالیفرنیا (دانشگاه برکلى) که اتاق کارش چند اتاق پایین تر از اتاق کار لطفى زاده است، مى گوید که فازى اشتباه و زیان آور است. من فکر نمى کنم که مسئله اى با منطق ساده و عادى بهتر حل نمى شود ... آنچه لطفى زاده مى گوید همان چیزى است که باعث شده تکنولوژى ما در این آشفتگى افتد و حالا قادر به بیرون کشاندن ما از داخل آن نیست. تکنولوژى ما را به این آشفتگى نکشانده است، بلکه حرص و طمع باعث این آشفتگى شده است. چیزى که ما به آن بیشتر احتیاج داریم تفکر منظم است، نه چیزى کمتر از آن. خطر منطق فازى این است که به نحوى باعث تشویق افکار مبهم و نادرستى مى شود که براى ما مشکلات زیادى به بار خواهد آورد.»در قبال انتقاداتى که بر ایده پیشنهادى لطفى زاده وارد شد او کاملاً سکوت اختیار کرد و با بى تفاوتى به کار بر روى منطق فازى و مفاهیم مرتبط با آن ادامه داد. پس از «مجموعه فازى» کلیه مقالاتى که او به رشته تحریر درآورد در زمینه «فازى»، «استدلال هاى تقریبى» و منطق فازى مباحث مرتبط با آن بود. در سال ۱۹۶۸ مقاله «مفاهیم الگوریتم سیستم هاى فازى»، در سال ۱۹۷۰ «تصمیم سازى فازى»، در سال ۱۹۷۱ «ترتیب فازى» و در سال ۱۹۷۳ «طرح یک راه حل جدید براى تجزیه و تحلیل سیستم هاى پیچیده و فرایندهاى تصمیم گیرى» را به چاپ رساند و در این مقاله به معرفى متغیرهاى زبانى و استفاده از قانون اگر _ آن گاه براى فرموله کردن دانش بشرى پرداخته و اساس کنترل فازى را استوار ساخت. در سال ۱۹۷۳ «مفهوم متغیر زبانى و کاربرد آن در استدلال تقریبى»، در سال ۱۹۷۷ «تئورى استدلال تقریبى» و در سال ۱۹۷۸ «مجموعه هاى فازى به مثابه بنیانى براى تئورى احتمالات»، در سال ۱۹۸۳ «نقش منطق فازى در کنترل عدم قطعیت در سیستم هاى خبره»، در سال ۱۹۸۹ «بازنمایى دانش و در منطق فازى» و بسیارى مقالات دیگر... پروفسور لطفى زاده در سال ۱۹۹۱ بازنشسته شده است ولى همچنان با جدیت مشغول پژوهش ها و فعالیت هاى علمى و ارائه مقالات جدید هستند.
+ نوشته شده در  دوشنبه نوزدهم مهر 1389ساعت 15:42  توسط بچه های مدرسه ی ملا صدرا  | 

 
<41c3026d1fb34d90> <50a52b00a9a047e0><-PostTitle-> <5f7bfb37ff2b4fbe><-PostContent->
برچسب‌ها: <-TagName->
<-PostLink-> <-PostLink->